18 |
Comparison of odds within strata

This chapter deals with methods for analysing stratified case-control stud-
ies which closely parallel the methods for cohort studies discussed in Chap-
ter 15.

18.1 The constant odds ratio model

As an example we return to the study of the effect of BCG vaccination upon
the incidence of leprosy. Since leprosy incidence increases with age among
young people, age is certainly a variable which would have been controlled
in an experiment. In Chapter 16 it was shown that BCG-vaccinated in-
dividuals had just under one half of the incidence of leprosy as compared
with unvaccinated persons, but age was ignored in the analysis. This could
have biased the estimated effect of BCG vaccination because BCG vacci-
nation in the area (Northern Malawi) was introduced gradually in infants
and young children, so that people who were older during the study period,
having been born at earlier dates, were less likely to have been vaccinated.
As a result, on average the vaccinated group will be younger than the un-
vaccinated group. This means that, even if BCG vaccination were totally
ineffective, one would expect to observe lower rates in vaccinated members
of the base cohort, simply as a result of their relative youth.

Table 18.1 subdivides these data by strata corresponding to 5-year age

Table 18.1. BCG vaccination and leprosy by age

BCG scar Odds
Leprosy cases Healthy population ratio
Age Absent Present Absent  Present  estimate

0-4 1 1 7593 11719 0.65
5-9 11 14 7143 10184 0.89
10-14 28 22 5611 7561 0.58
15-19 16 28 2208 8117 0.48
20-24 20 19 2438 5588 041
25-29 36 11 4356 1625 0.82

30-34 47 6 5245 1234 0.54
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bands. The table also shows age-specific odds ratios. Although there is
random variation, there is no systematic trend of the odds ratio with age,
and it seems reasonable to make the assumption that the odds ratio pa-
rameter is the same in all age bands. In the next section we show how an
estimate of this common odds ratio can be calculated.

18.2 An estimate of the common odds ratio

In the prospective approach to the analysis, the assumption of a com-
mon odds ratio implies that wt/wf is constant, so that the model can be
expressed in terms of the odds ratio parameter ¢ and the wf parameters.
Alternatively, in the retrospective approach the model is expressed in terms
of @ and the parameters Qf. In both approaches, replacing the nuisance
parameters by their estimates leads to the profile likelihood for §. If there
are not too many strata, and the data are not too sparse in each stratum,
then the profile likelihood for # can be used to find the most likely value and
the supported range. For coarsely stratified data sets such as Table 18.1,
these conditions are met. Such an analysis is not feasible by hand, but
would usually be carried out on a computer using logistic regression (see
Chapter 23).

When the data are very finely stratified so that each stratum contains
very few cases and controls, the profile likelihood approach can be unre-
liable, and the hypergeometric likelihood should be used. The total log
likelihood is then obtained by adding together the hypergeometric log like-
lihoods for the different strata. Again, the most likely value M and the
standard deviation S cannot usually be computed by hand, but would be
carried out using a conditional logistic regression program (see Chapter 29).
However, the calculations for the score test for § = 1 are straightforward.
For a single stratum the score under the hypergeometric likelihood is

U=D,-E

where D is the observed number of exposed cases and E; = DNy/N is
the expected number under the null hypothesis. The score variance is

DHNyN;
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Since every stratum contributes additively to the overall log likelihood,
the overall score is a sum of contributions from each stratum of exactly the
same form as above. Thus, the score is

U= (D} -E)
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where \
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and the overall score variance is
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Exercise 18.1. Show that the first age band in Table 18.1 makes a contribution
of —0.21 to U and 0.48 to V.

The overall test statistic is obtained by repeating these calculations for
each stratum and yields

U=-0.21—-0.69 —6.68 —6.56 — 8.11 — 1.76 — 4.06 = —28.07
and
V =0.48 +6.05 + 12.18 4 7.38 + 8.22 + 9.22 4 8.09 = 51.62.
The approximate chi-squared value on one degree of freedom is
(U)?)V = 787.92/51.62 = 15.26.

The statistic U has a negative sign because the exposure is protective — the
observed number of vaccinated cases is less than would have been expected
had vaccination been ineffective.

Exercise 18.2. Verify that, when there is only one case per stratum, the test
becomes identical to the log rank test discussed in section 15.5.

This test was proposed by Mantel and Haenszel. They also proposed a
way of calculating a nearly most likely value for 8. This is suggested by an
algebraic rearrangement of the equation for the score:

U = Y (Di-E})
ZD{HS—DSH{

- Te-Tw

where Q = DEH{/N*® and R* = D} H:/N*. The usual estimate of the odds
ratio in stratum ¢ is Q*/R’, and this suggests estimating the common odds
ratio, 4, by

QHQ+..._Q

R4+ R2+... R



178 COMPARISON OF ODDS WITHIN STRATA

When the true value of ¢ is close to 1, this Mantel-Haenszel estimate is
almost as precise as the the most likely value of 8 according to the hyper-
geometric likelihood. It can only be improved upon for odds ratios which
differ substantially from one.

Exercise 18.3. Show that the Mantel-Haenszel estimate of the odds ratio for
the data of Table 18.1 is 0.587.

Note that allowing for confounding by age has weakened the estimated
protective effect of vaccination. This is now about 41% rather than 52% —
a modest adjustment. This is in accord with the general experience that
confounding only causes substantial modification of rate ratios in quite
extreme circumstances.

The usefulness of the Mantel-Haenszel estimate in practice was limited
by the fact that, rather surprisingly, no expression was available for its
standard deviation until relatively recently. Several estimates have now
been proposed, most of them rather awkward to calculate. For most prac-
tical purposes, a good estimate is provided by the same expression as for
the cohort study version (Chapter 15):

v
S=4/—.
QR

Exercise 18.4. For the data of Table 18.1, calculate the 90% confidence interval
for the age-adjusted vaccine effect.

18.3 Improving efficiency by matching

In Exercise 16.2 we repeated the analysis of the leprosy study using a sample
of 1000 controls drawn randomly from the healthy population, with only a
modest loss in the precision of our estimate of the odds ratio. The position
changes, however, when we stratify by age in the analysis.

Table 18.2 shows the way the simulated data lie. It is clear that the
precision of the age-controlled odds ratio estimate will not be as good as
we would have expected with more than 3 times as many controls as cases.
The study has 238 controls for the 2 cases in the 0-4 year age group yet
only 80 controls for the 53 cases in the 30-34 year age group.

With such a design, many controls are wasted and the efficiency of the
study will be lower than it would be if the ratio of controls to cases were
held constant within strata. This is called matching. If the study is carried
out so as to achieve a constant ratio of cases to controls in broad groups
it is called a group or frequency matching. If a set of matched controls
are selected specifically for each case, it is called individual matching. Ta-
ble 18.3 shows a simulated study in which the number of controls has been
maintained at 4 times the number of cases in all age groups.

Exercise 18.5. For the data set out in Table 18.2, the values of Q, R, U,V are
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Table 18.2. The simulated study stratified by age

BCG scar
Cases Controls
Age Absent Present Absent Present
0-4 1 1 101 137
5-9 11 14 91 115
10-14 28 22 82 101
15-19 16 28 - 28 87
20-24 20 19 25 69
25-29 36 11 63 21
30-34 47 6 56 24

Table 18.3. A simulated group-matched study

BCG scar
Cases Controls
Age Absent Present Absent Present
0-4 1 1 3 5
5-9 11 14 48 52
10-14 28 22 67 133
15-19 16 28 46 130
20-24 20 19 50 106
25-29 36 11 126 62
30-34 47 6 174 38

30.00, 51.57, 21.57, and 39.68. For Table 18.3 the corresponding values are 32.14,
56.54, 24.40, and 43.27. Compare the estimates, confidence intervals, and score
tests for the two sets of data.

In practice, age is usually a very strong confounder and almost all case-
control studies are matched for age. At one stage, simultaneously matching
for as many other confounders as possible was frequently advocated. 1t is
now clear that this is not a good idea, but matching is such an intuitively
appealing idea to many epidemiologists that some discussion of the points
for and against matching is of interest.

First it should be noted that an appreciable gain in precision is achieved
only for a confounding variable which is very strongly related to the ex-

_posure of interest. For less strongly related confounders matching leads to

only modest gains in precision while complicating the study design. More
seriously, if a variable is matched in the design, the ability to examine the
effect of that variable is lost since its distribution in the controls will match
that in the cases rather than that in the study base. One must be confident
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Table 18.4. Bias due to ignoring matching

Cases Controls Odds
Stratum  Exposed Unexposed Exposed Unexposed ratio
1 89 11 80 20 2.0
2 67 33 50 50 2.0
3 33 67 20 80 2.0
Total 189 111 150 150 1.7

of the role and status of the variable before accepting such a limitation.

Secondly, much of the early popularity of matching stemmed from a mis-
conception that variables matched in the design can be ignored in analysis,
since differences between cases and controls could then not be attributable
to these variables. It is now understood that this practice leads, in general,
to incorrect estimates of odds ratios. This is demonstrated by Table 18.4.
There are 100 cases and 100 controls in each stratum so that, overall, the
cases and controls are matched with respect to stratum. However, despite
the matching, the marginal odds ratio is 1.7 rather than 2.0, the value
within strata. We have already warned of this behaviour of the odds ratio
in section 15.7; even when confounding by age is removed by matching,
the marginal odds ratio is not equal to the conditional (age-specific) odds
ratios.

The bias that arises by ignoring matching in the analysis is always
towards € = 1. The only circumstances under which it does not occur is
when the matching variable is unrelated to exposures of interest. Only
then may the matching be ignored, but in that case the variable is not a
confounder and there would seem to be no purpose in matching for it in the
first place. However, we shall see in the next section that there are reasons
for matching other than for the efficient control of confounding. Some of
these can lead to circumstances in which the matching can be ignored in
analysis, but usually this is not the case.

Taken together, these two points lead us to a position where a matching
variable must be regarded as a confounder and must be used in the analy-
sis. From this it follows that estimates of the effects of all other exposures
will be controlled for the matching variable. But this may not be what we
want to do. For example, in perinatal epidemiology it may be appropriate
in some analyses to consider birthweight as a confounder while for other
analyses this may not be sensible. If the study is matched for birthweight
at the design stage, analyses which seek to hold birthweight constant are
easily carried out using stratified comparisons, but analyses which do not
hold birthweight constant are much more difficult. Indeed they would be
impossible without knowledge of the sampling fractions for drawing con-
trols from the base within strata. These complexities are best avoided and
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(a) (b)

(c) (d)
Fig. 18.1. To match or not to match?

matching for variables which may not be regarded as confounders for some
questionsis In general amistake. B

Finally, matching may actually reduce the eﬂ‘lmency of a study. This
occurs when the matching variable is strongly related to the exposure, but
not to disease risk (so that, again, it is not a confounder). This is called
overmatching. It leads to a loss in efficiency because the effect of the
matching is gri}L to narrow the range of exposure studied. A good example
would be a study of diet and some childhood illness using siblings of cases as
controls. While such a study would be expected to yield the correct answer
if properly analysed, it would be very inefficient — since siblings usually
eat at the same table of the same prepared meals, the only information
available for estimating the effects of interest will be from sibling pairs
with discordant diets.

This discussion is summarized in Fig. 18.1. The letters D, E, and M
refer to disease, exposures of interest, and matching variable respectively.
Connecting lines indicate statistical relationship. Case (a) is the only one
in which matching leads to a more precise estimate of the odds ratio. Case
(b) is overmatching and leads to a loss of precision. In cases (a) and (b),
the matching must be preserved in the analysis, whereas in cases (¢) and
(d) it may be ignored.

The above discussion tacitly assumes that controls are matched to cases
in rather broad strata, such as 5- or 10-year age bands. It applies equally
to individually matched studies; in principle there is no difference between
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these options, although in practice the latter present rather more difficult
analysis problems as a result of the very large number of nuisance pa-
rameters introduced by such fine stratification. These will be discussed in
Chapter 19. Although matching must usually be preserved during analysis,
it is not always necessary to preserve individual matching. If matching of
controls to cases is only with respect to well defined, accurately measured
variables then a coarser grouping at the analy31s stage is both possible and
acceptable. For example, if matching is only by age, analysis by 5- or 10-
year bands will be quite satisfactory even if specific controls were drawn
for each case. However, matching by characteristics such as nelglib_ourhood
or family does not allow later aggregation of strata.

18.4 Other reasons for matching

Matching is usually justified on the grounds of statistically efficient control
for confounding. Close examination of this suggests that matching should
be used as little as possible and only for variables, like age, which are
strongly related to both disease and exposure and whose status is unequiv-
ocally that of confounder. However, a cursory review of the epidemiological
literature shows that matching is used much more widely than this argu-
ment would support. This is because controls are often matched to cases
for reasons which have nothing to do with control for confounding.

INCIDENCE DENSITY SAMPLING

One example is incidence density sampling, which is simply matching con-
trols to cases with respect to time (date of occurrence). Although time
may be a confounder (when both disease rate and exposure distribution in
the study base vary during the study period), incidence density sampling
is more usually employed for simple practical reasons. It will often be pos-
sible to ignore this matchmg in the analysis or, at most, to group coarsely
on tlme

DEFINING THE EXPOSURE WINDOW

Until this point we have assumed that each individual can be classified as
exposed or unexposed and that this assignment holds for all time. However,
many exposures in epidemiology vary over time, perhaps_quite_rapidly.

When this is the case, it is necessary to specify the time period for assem

relevant exposure. This exposure wmdow is usua.lly clearly definable for
recogmzed but comparable ru,les ‘for controls can be difficult to specify.
Things are much easier when one or more controls are matched to each
single case with respect to time of diagnosis of the case; the time window
used for assessing the relevant exposure of each case is carried over to the

i
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Fig. 18.2. Neighbourhood matching.

matched controls, thus ensuring comparability. We shall encounter a good
example of this in Chapter 19.

AVOIDING SELECTION BIAS

Another example is where controls are matched to cases in order to min-
imize selection bias. This is usually done either because the study base
has not been precisely defined or because there is no accurate way of sam-
pling it. For example, in a geographically based study selection bias may be
caused by the lack of an accurate population register of the study area. Un-
fortunately, construction and maintenance of such registers is enormously
costly and will rarely be feasible for a single case-control study. However,
if the study is closely matched, better sampling may be possible. Fig. 18.2
illustrates this for a geographically based study, divided by the grid into
small neighbourhoods. The dots represent cases occurring during the study
period. A study which matched for neighbourhood would sample controls
only from those neighbourhoods in which a case occurred and it would

~only be necessary to construct lists of eligible controls for these. If neigh-

bourhoods are sufficiently small this involves little work. Of course, the
definition of neighbourhood does not have to be in terms of a regular grid
for this argument to apply. A similar argument justifies drawing controls
from the list of patients of the family doctor of each case.
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Solutions to the exercises

18.1 The number of exposed cases, D!, is 1 and the expected number
under the null hypothesis is

11720
1_ - " =12
By =2 X 1m0+ 7594 !

so that the contribution to U is (1 — 1.21) = —0.21. The contribution to V
is

2 x 19312 x 7594 x 11720
(19314)2 x 19313

= 0.48.

18.2 The expression for the ‘expected’ number of exposed cases in each
stratum, EY, is identical to that given in section 15.5. ‘Thus, the score
statistics, U, are identical. When there is only one case per stratum, D = 1
and H? = Nt — 1 so that the contribution of stratum t to V is

o (VP DNENE  NgNE
(NP (NE-1) (V¥
which is identical to our previous expression. When using the log rank test

with tied event occurrence times (so that D* > 1), the variance formula
given in this chapter should be used.

18.3 The first contribution to the numerator (top) and denominator (bot-
tom) of the Mantel-Haenszel estimate are as follows:

N 1 x 7593 L
T 14147593 +11719°

_ 1x 11719
T 14147593+ 11719°

Ql

Continuing the calculation, we get:

Age Q R
04 0.39 0.61
5-9 5.76 6.46
10-14 9.34 16.01
15-19 596 12.53
2024 5.74 13.86
25-29 7.95 9.70
30-34  4.82 8.88
Total 39.96 68.05

Note that the ratio @/R for each row gives the odds ratios calculated in the
previous exercise. The Mantel-Haenszel estimate is 39.96/68.05 = 0.587.

3
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18.4 V is given in the text following the first exercise as 51.62 and Q and
R were calculated in the second exercise to be 39.96 and 68.05 respectively.

Using the formula S = +/V/(QR),

/ 51.62
s 39.96 x 68.05 0.138

The error factor for 90% confidence limits is exp(1.645 x 0.138) = 1.255
so that the confidence limits for the odds ratio controlled for age are
0.587/1.255 = 0.47 (lower limit) and 0.587 x 1.255 = 0.74 (upper limit).

18.5 The analysis of the two sets of data yields the following results:

Table 18.2 Table 18.3

Estimate () 0.582 0.568
S (log(8)) 0.160 0.154
Error factor 1.301 1.289
Lower 90% limit 0.447 0.441
Upper 90% limit 0.757 0.732
(U)Y2/v 11.73 13.76

In this case the increase in precision achieved by matching is not great.
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